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Laminar free convection in a vertical slot 

By J. W. ELDER 
Department of Applied Mathematics and Theoretical Physics, Cambridge? 

(Received 6 November 1964 and in revised form 10 May 1965) 

This is largely an experimental study of the interaction of buoyancy and shear 
forces in the free convective flow of a liquid in a rectangular cavity across which 
there is a uniform temperature difference, AT, produced by maintaining the two 
vertical walls at  two different temperatures. The height of the cavity, H ,  is made 
larger than the width of the cavity, L, and the cavity is sufficiently long in the 
third dimension for the mean flow to be nearly everywhere two-dimensional. 
The flow is specified by three dimensionless parameters: CT, the Prandtl number; 
h = H / L ,  the aspect ratio; A = yg h T L 3 / ~ v ,  the Rayleigh number. The experi- 
ments are generally restricted to h = 1-60, (r + lo3 and A < los. 

For A < lo3 the temperature field closely satisfies Laplace’s equation but a 
weak stable unicellular circulation is generated. The flow is vertical throughout 
the slot except for regions within a distance of order L from the ends. 

For lo3 < A < lo5, large temperature gradients grow near the walls, and in an 
interior region a uniform vertical temperature gradient is established. The flow is 
similar to that near an isolated, heated, vertical plate except that the vertical 
growth of the wall layers is inhibited in the central part of the slot by the presence 
of the other layer which prevents entrainment of fluid. 

Near A = lo5 the interior region of the flow generates a steady secondary flow. 
A regular cellular pattern becomes superimposed on the basic flow to produce a 
’ cats-eye ’ pattern of streamlines. Near A = lo6 when the secondary cell ampli- 
tude is large, a further steady cellular motion is generated in the weak shear 
regions between each cell. 

1. Preliminary remarks 
Many geophysical and astrophysical phenomena are maintained by buoyancy 

forces, but the role of these forces is generally strongly modified by co-existing 
shear, rotation of the system as a whole, processes at a free surface, and so on. 
The free convection of a viscous fluid in a vertical slot, whose walls are held at 
two different temperatures, provides one of the simplest cases of an interaction 
between buoyancy and shearing forces; a study of this interaction is the central 
theme of this paper. 

This investigation was started simply as an attempt to obtain an experimental 
visualization of the boundary-layer flows which precede and follow the onset of 

t Present address : Institute of Geophysics and Planetary Physics, University of 
California, LE Jolla, California. 



78 J .  W .  Elder 

convective turbulence, but it was sooii discovered that the primary laminar 
circulatory flow does not at  first produce boundary-layer waves but, rather, 
steady large-scale secondary flows appear in the interior of the slot. Further, it 
was found that these secondary flows, when of sufficient amplitude, were able to 
generate other steady secondary flows, to be called tertiary flows. Here we 
discuss the primary circulatory flow and the steady secondary flows which can 
grow in it, leaving for another paper the study of the unsteady disturbances and 
the subsequent turbulent flow. 

2. Statement of the problem 
2.1. Dimensional analysis 

Consider the arrangement shown in figure 1. A hollow rectangular prism of width 
L, breadth B and height H has a co-ordinate frame OXI'Z with its origin 
located in one corner. The face x = L is maintained at temperature To, the face 

L 

0 1Y 
FIGURE 1. Diagram of the slot. (Note : in all diagrams the hot wall is on the left-hand side.) 

x = 0 at temperature (To + A T )  and the other walls are insulated. Provided B is 
sufficiently greater than L, the primary motion of the fluid which fills the prism 
will be nearly everywhere two-dimensional and confined to planes y = const., 
except near y = 0, B. In the analysis BIL = 00. A possible isotherm and stream- 
line is shown projected on y = 0 in figure 1. 

Making the Boussinesq approximation, that density variations are significant 
only in their generation of buoyancy forces, and that other fluid parameters are 
independent of temperature, the problem is defined by: the kinematic viscosity, v ;  
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the thermal diffusivity, K ;  the acceleration due to buoyancy, yg AT, where y is 
the coe%cient of cubical expansion; L and H.  Hence, since these involve only 
the dimensions of length and time, three dimensionless parameters are needed to 
specify the system, A convenient set is: 

S2 = (T = V / K ,  Prandtl number; ( 1 4  

A = yg A T L 3 / ~ v ,  Rayleigh number; (1  b )  

h = H / L ,  aspect ratio. ( 1 4  
The field variables can be conveniently made dimensionless by choosing units 

of length, temperature, pressure, velocity: 

L, AT, POL% ( K V ) W .  ( 2 )  

Where confusion may arise, dimensional variables are written with an asterisk (*). 
The dimensionless temperature is written as 8. We shall write 5 = 1 - x. 

2.2. Other investigations 

Batchelor (1954) has given a theoretical analysis of the problem, the case A < lo3 
being treated in some detail, but for large A only a qualitative discussion is 
possible. Batchelor’s work, like that of Pillow (1952), suggests that as A -+ 03 the 
inner region has both constant non-zero vorticity and constant temperature. 
Eckert & Carlson (1961) have obtained with an interferometer, detailed observa- 
tions of the primary temperature distribution in air (cr = 0.7) and, in particular, 
measurements of the local heat transfer at  the walls. They substantially confirm 
Batchelor’s calculations at  small A ,  but a t  large values of A find no evidence for 
Batchelor and Pillow’s contention that the inner region will have a constant 
temperature; rather, they find a region of constant vertical temperature-gradient. 
These observations are confirmed by Mordchelles-Regnier & Kaplan (1963) using 
carbon dioxide gas at high pressures. Further evidence that the inner region has 
a constant vertical temperature-gradient and also zero vorticity is given in a 
calculation by Weinbaum (1964) and some experiments by Martini & Churchill 
(1960) for convection in a horizontal cylinder. 

2.3. The present investigation 

The experiments reported here are generally restricted to h = 1-60, u + lo3 and 
A < 108. Near A = lo7 the wall region becomes unstable; travelling wave 
systems grow independently on both the hot and cold walls. At A = lo9, the 
central portion of the slot is turbulent. The flows for A > 108 will be discussed in 
another paper. 

Our interest will centre around: (i) the uniform vertical temperature gradient 
found in the interior of the flow for A > 104; and (ii) the mechanics of the 

secondary flows. It is found for A > lo5, that ph = const., independent of S 
and A .  In  this case the flow in the central portion of the slot is most strongly 
influenced by m E. ($PA)*. Secondary flows appear for m 2 2n. 

The experimental observations are discussed in Q 3-5, followed by an analytical 
discussion in 3 6-8. 
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3. Experimental method 
The flows were established in a rectangular cavity, two walls of which were 

maintained a t  two constant but different temperatures by pumping water from 
two thermostatic units through cavities behind the walls. The temperature 
difference AT was held constant to generally better than 2 0.05 "C, the metal 
walls ensuring a negligible vertical temperature-gradient in the walls (measured 
values, no more than O.Ol/H, "Cicm). The lower end of the cavity was packed with 
an insulator, either a block of porous rubber or Perspex; the upper (free) surface 
of the fluid was left undisturbed in contact with a dead-air space above the filled 
portion of the cavity. Thus, the boundary conditions on the upper fluid surface 
differ from those on the lower surface, but this was the most convenient arrange- 
ment for probe access. 

Velocity measurements were made by direct observation through the glass or 
Perspex sides (y* = 0, B )  of aluminium powder suspended in the fluid; either 
visually, by timing the passage of a single particle between fixed marks in the 
eyepiece of a travelling microscope, or from time photographs, in which the 
streak-length is proportional to the velocity. Where possible, the plane of observa- 
tion was chosen halfway between the glass sides. Velocities are accurate to better 
than 5 5 %. A very helpful point is that aluminium particles are roughly disk- 
shaped and tend to lie with the plane of the disk on the stream surface, so that the 
broad features of the stream surfaces are immediately apparent. 

Temperatures were measured with copper-constantin thermocouples and a 
potentiometer to k 0.01 "C. A probe was entered from above; the lower elid was 
of diameter 1 mm, with 3 ern of the thermocouple wires (46s.w.c.) sticking out of 
the end. Direct observation showed very little disturbance to the flow due to the 
presence of the probe, except for a very slow drift of the cellular pattern. 

Three experimental arrangements were used: 
Apparatus I: H < 60 cm; B = 5 em; L = 1 ,2 ,3 ,4 ,5  em. 
Apparatus 11: H < 80 em; B = 10 cm; L = 4.08 cm. 
Apparatus 111: H = 55 cm; annular cylinder of radii 3.3 cm, 6.3 em; L = 3 em. 
The initial study was with apparatus 111, in which the discovery of the vertical 

temperature-gradient and the cats-eye mode were first made. This apparatus was 
supplied with a uniform heat flux on the inner boundary wall. 

Apparatus I was designed so that L could be set to an arbitrary value, while 
apparatus I1 was specifically designed for the turbulence work. 

Two fluids were used: medicinal paraffinand a silicone oil MS 200/ 100 centistoke. 
They both allow studies over the Rayleigh-number range of theexperiments using 
apparatuses of convenient size and temperature differences sufficiently large for 
accurate measurement. A particularly convenient feature is the ease with which 
aluminium powder can be suspended. Such viscous oils necessarily have high 
Prandtl numbers so that in effect the 3 parameters (1) are reduced to 2. Both oils 
have similar properties, but paraffin has a very much larger variation of viscosity 
with temperature. The specification (1) requires y, K ,  v to be independent of 
temperature and y A  T < 1. Within the present experimental accuracy these 
requirements are satisfied except that the variation of viscosity with temperature 
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is large. In the specification f 1) vis evaluated (somewhat arbitrarily) at  (To + $AT) .  
At larger values of AT the lower local viscosity near the hot wall produces 
noticeable asymmetry in the fl0w-e.g. the velocity profile is thinner and the 
velocity amplitude greater at  the hot wall. 

A further departure from ideal behaviour is the existence of three-dimensional 
effects due to finite values of LIB. Even for LIB = 1, at sufficiently high values 
of A,  the motion is closely two-dimensional. The relevant parameter is 6*/B, 
where 6" is the wall-layer thickness, and, provided this is small, three-dimensional 
effects will be small. Nevertheless, there can be no motion on the faces y = 0, B, 
so that it is necessary to make observations well away from the faces. This raises 
a difficulty with the photographic technique for measuring the velocities, because 
particles moving near y = 0, B tend to obscure the interior flow. 

The reader should keep in mind the asymmetry produced by viscosity varia- 
tions and three-dimensional effects produced by the side walls when inspecting 
the visualization photographs. 

4. Experimental data for the primary flow 
4.1. Temperature distribution 

The temperature distribution has already been studied in some detail by Eckert & 
Carlson (1961); they have used their data to evaluate the local Nusselt number as 
a function of position on the slot wall, and in particular include a study of the 
low-Rayleigh-number case. For A < lo3 the temperature field nearly everywhere 
closely satisfies Laplace's equation, so that 8 + (1  - x), for which the heat flux is 
conductive and horizontal. There is no vertical temperature-gradient. The 
temperature field is such that the fluid is not in hydrostatic equilibrium; clearly 
a column of fluid near the cold wall has greater weight than a similar column near 
the hot wall, and a weak, steady circulation of constant sign is generated in the 
slot. This is a uni-cellular motion with fluid ascending in 0 < x < 8,  descending in 
$ < x < 1, buoyancy forces balancing viscous forces. The heat transported by 
the flow is negligible except for small contributions near the ends. As A increases, 
the temperature progressively departs from 8 = (1  - z), the isotherms becoming 
S-shaped, as sketched in figure 1 .  The changes in the temperature field are initially 
most marked near the bottom of the hot wall and the top of the cold wall. 

Here, our interest is directed toward understanding the primary flow in the 
case of strong convection, particularly insofar as it produces the secondary flows. 
Figure 2 ,  therefore, shows the temperature distribution in a slot with h = 20, 
A = 4.0 x lo5, when the primary flow is approaching the condition under which 
the secondary flow appears. 

Three regions can be distinguished: a wall region, an interior region, and an 
end region. In  the wall region 0 < (x, 5 )  < 0-2, the isotherms are slightly inclined 
to the wall with the temperature gradient being nearly horizontal-the tem- 
perature gradients are largest here. The interior region 0.2 < x < 0.8 has nearly 
horizontal, regularly spaced isotherms from 8 = 0.35 to 0.65, a region of nearly 
uniform, positive, vertical temperature gradient. Near the ends z < O-lh, > 0-9h 
the pattern is strongly influenced by the end boundary conditions. 

6 Fluid Mech. 23 
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The end regions can be regarded as buffers between the end boundary condi- 
tions and the nearly unidirectional flow between them. Here both ends are 
regions of outward heat flow. This differs from Eckert & Carlson's experiments, 
where 19, is everywhere positive; they have insulators at both ends but here the 
upper end is a free surface which loses heat to the air space above. The end region 

1 Inner region 1 
1 

.e . 

- 
End region 

- 

0 1 
X 

FIGURE 2. Temperature distribution: h = 20; A = 4.0 x 106 (L  = 3 em, AT = 16.0 "c 
paraffin). Note: vertical scale is 2 horizontal scale. Lines drawn a t  constant values of 8. 

is not sharply defined, but at small A it  is of vertical extent about 2L, at large A 
i t  is of extent @ l h .  On no occasion in the present investigation were secondary 
flows found to originate in the end regions, rather these always appeared to be 
regions of strong damping. Subsequent remarks therefore do not apply to the 
end regions. 
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4.2. Temperature profile 

Temperature profiles at various values of z are shown in figure 3 by plotting 
0 = 8 - 0, as a function of x ,  where 6 = S,, when x = 8. In the inner region 
0.2 < x < 0.8 all the points lie on the same curve, i.e. 0 is independent of z.  Near 
the walls, however, 0 is a function of both x and z :  8, decreasing as z increases 
along x = 0 and vice versa on x = 1. 

FIGURE 3. Temperature profile as a function of 2, 0 = 8 - 8,%; 
A = 4.0 x 106, a t  four values of z/h. 

4.3. The vertical temperature gradient p 
Figure 4(a) shows values of 8, as a function of z/h for $xed h = 20 at three values 
of A (i.e. 3 values of AT) .  Except near the ends, the temperature has a nearly 
uniform gradient p = dO,/dz. Note that the flow with A = 6.5 x lo5 contains a 
secondary flow but the profile still has a pronounced linearity. 

Figure 4 ( b )  shows values of 8, as a function of zlh for fixed A = 1.2 x lo6 a t  
four values of h (i.e. 4 values of H ) .  Here also p is nearly constant. Note that 
quite small values of h are included, e.g. h = 2.5. 

4.4. Magnitude of /3 

Apparatus I was arranged with 3 thermocouples carefully mounted at x = +; 
z /h  = 0-4, 0.5,0.6 and y* = 4B. The spacing L was set at  1.03 cm; silicone oil was 
used. This provided a direct measurement of/3 as a function of A (i.e. AT) without 
otherwise altering the apparatus. A direct-coupled amplifier was used to provide 
a precision of better than 0.001 "C. The temperatur'e difference between pairs 
of thermocouples was measured directly. The results are shown in figure 5 .  

6-2 
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0 

FIGURE 4. Centre-line temperature 
apparatus I); A : 5.6 x lo4, 8; 1.6 x 
apparatus 11); h :  18.8, 0; 10.0, x 

zlh 
(6) 

8, as a function 
105,o; 6.5 x 105, 
; 5.0, A ;  2.5, 0. 

of 
0. 

z/h: (a)  Fixed 
(6) Fixed A = 

1 

h = 20 (L= Zcm, 
1.2 x lo6 ( L  = 4cm, 



Laminar free convection in a vertical slot 85 

Below A = lo4, a non-zero value of p could not be found: between A = lo4 - LO5 
a very rapid appearance of non-zero values of /3 occurs: beyond A = lo5 up to at  
least A = los, achieves its asymptotic value; ph -+ 0.50 for paraffin, 0.55 for 
silicone 100 cS., while Eckert & Carlson's (1961) results for air give 0.60. Thus, 
/3h is a weak function of Prandtl number. Note that p is approximately equi- 
valent to the temperature gradient given by half the slot temperature drop 
established over the height of the slot. 

A 

FIGURE 5 .  Centre-line vertical temperature gradient ,8. L = 1.03 em, apparatus I. 

The value of /3 for given A was found to decrease a little at higher values of AT. 
Interpreting this as due to the variation of viscosity with temperature, all the 
paraffin data fit 

where v0,v1 are the kinematic viscosities evaluated at  To and (T,+AT), 
respectively. 

/?h = 0.50[ 1 - 0*04(~, - v I ) / v ~ ] ,  

4.5. T h e  velocity distribution 

Figure 6 shows experimental data for the velocity profile at z = +h at four values 
of A .  The various parameters are summarized in table 1. (The theoretical curves 
and f, m refer to the theory below. The values off are fitted values.) 

as required by continuity and 
the symmetry of the boundary conditions, except for tl tendency to higher 
velocities and smaller wall layer thickness in the flow near the hot wall produced 
by the variation of viscosity with temperature. Profile 6 (a )  has an inflexion point 
at 5 = 4 and is very similar in form to that required as A -+ 0. Profiles 6 ( 6 )  and 
6(c) have three inflexion points which become more widely separated as A 

The profiles are all antisymmetric about x = 
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increases and the velocity profile becomes increasingly localized near the two 
walls. Profile 6 (d )  shows a small flow reversal in the region 0.2 < x < 0.S. 

Figure 7 shows the velocity profile at various values of z for fixed A ,  h 
( H  = 75.7 em). The velocity is greatest near z = f,h, but the profiles at  z* = 30, 
40,50 cm are indistinguishable. 

0.2 

0 

0.2 

0 

5 
E 
B 0 2  
c.l -.. 

8 

0 

0.2 

0 

0 1 

X 

FIGURE 6. Velocity profiles at  z = &; apparatus I, paraffin, as specified in table 1 ;  at 
various A :  (a)  3 . 0 8 ~  1W; ( b )  2.95 x 106; (c) 6 . 5 6 ~  I@; (d )  3.61 x lo6. (The curves are 
calculated from ( I la )  with values off given in table 1.) 
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4.6. Experimental data on the innerJEow as A --f 00 

There is little experimental information for the inner flow at large Rayleigh 
numbers but the existing information strongly suggests that the inner region has 
zero vorticity and retains a finite, positive temperature gradient. This evidence 
is of necessity restricted to A < lo8, for a t  about this Rayleigh number the 
motion is no longer steady. 

Profile L (em) H (cm) A T  ("C) S A 172 f 
2.00 38.8 5.40 50.6 3 . 0 8 ~  lo4 3.75 0.25 

4.08 56.5 11.6 46.7 6 . 5 6 ~  105 8.70 0.48 
4.08 29.3 33.5 33.8 3.61 x lo8 15.1 0.53 

6 (a)  
6 ( b )  
6 ( c )  
6 (4 

4.08 56.0 5.75 49.0 2.95 x 105 7.20 0.43 

TABLE 1 

0 X 0.5 

FIGURE 7. Velocity profiles for L = 4.08 cm, H = 75.7 om, A = 4.0 x lo5 at various values 
of z*.  Apparatus 11. 

Martini & Churchill (1960) used a gas-filled horizontal cylinder for which one 
side of the circumference was heated, the other cooled. They observed a ring of 
gas circulating in a boundary layer near the wall but with an apparently stagnant 
interior. Their observation generally agrees with the calculations of Weinbaum 
(1964). 

Here a nearly square cavity (h  = 0.92) filled with silicone oil was observed at  
A = 9.4 x lo6 (L  = 4.8 cm). The results are sketched in figure 8 drawn from a 
sequence of time photographs and confirmed by visual inspection. Note that 
here the upper and lower boundary conditions were identical-both surfaces 
being made with *in. Perspex (previously the upper surface was free). Three 
distinct areas can be seen: (1) a wall region of strong clockwise circulation, in which 



88 J. W. Elder 

the streamlines closely follow the form of the wall; ( 2 )  a part of the interior 
adjacent to the vertical wall layers, also with clockwise circulation but in which 
the streamlines do not follow everywhere the form of the wall-these weak 
circulations are attached to the vertical layers and produce a weak return flow 
in the outer portion of the vertical layers; (3) the central part, or core, of the 
interior where no detectable flow could be observed, a velocity of 1 yo of the 

z 

c 

L 50 

X 

FIGURE 8. St,reamlines of laminar flow in a nearly square cavity. h = 0.92, A = 9-6 x 1 0 6 .  
The stream funct'ion has been scsled to 100 units at  the cavity centre. (VS 13: 26-32). 

maximum found in the wall layer would have been easily detectable. However, 
the experiments did not find the motion in the core to be zero because, in the 
course of several runs, a characteristic distribution of the aluminium powder was 
found (admittedly this could have been established during the transient heating 
period), namely, a concentration of randomly oriented particles along a line 
near x = i h  as drawn in figure 8, suggesting a zone of both very small velocity 
and shear. 

5. Experimental data for the secondary flows 
5.1. Onset of the secondary $ow 

Figure 9 shows typical streamlines tracedfrom photographs for flow in apparatus I 
with L = 2.00cm. Infigureg(a),A = 3-0 x 105, theflowisunicellular; thestream- 
lines circulate from one end of the slot to the other. In  figure 9 (b ) ,  A = 3.6 x lo5, 
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FIGIJRF, 10. (a) Streak photograph of streamline5 of‘ thc sccontlary flow; A = 9 x 105, 
I, = 3 cm, apparatus I. (VS 6:  19). ( b )  Photograph of‘ the toroitlal tltstnrbances in thcx 
annulus of apparatiis I1 I ;  A = 4.8 x lo”. Thc bright streaks on the left are thrrniocouplc 
wires. (VP 3 :  11 .) 

ELDER ( F C l C Z Y L y  7J. 8 8 )  
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FIGURE 14. Strcalc photographs of strcarnlincs of' thc  sccontlary flow at V ~ P I O L I S  A, 
I ,  = 4.08 em, shoming the developmcnt of' th(x twtiary flow: ( a )  7 . 1  x lo5; ( b )  0.4 X lor': 
( c )  3.3 x l o b .  (VS 9: 4, 5, 8.) 

E TAU E It 



x 0 1  
m -  
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a second set of streamlines has appeared-one short cell and one which reaches 
to the upper-end region. These cells are very weak, and near the critical Rayleigh 
number are extremely difficult to detect, especially when the wavelength is large. 

FIGURE 9. Sketch of streamlines of the secondary flow a t  various values of A : (a)  3.0 x 105; 
( b )  3.6 x 105; (c) 4.0 x 105; (d) 4.9 x lo5; (e) 5.8 x 105; (f) 6.8 x 105. L = 2 em, H = 38 cm, 
apparatus I (VS 2 :  30-35). 

As the Rayleigh number is increased the wavelength decreases, figure 9(c),  and 
more cells can be fitted into the inner region, figures 9 ( d ) - ( f ) .  In  the experiments, 
critical temperature differences were 27 ? 2 "C, 6 & 0.5 "C, 4 _+ 0.5 "C for L = 2 , 3 ,  
4 cm respectively, corresponding to a critical Rayleigh number of 

A = 3 ~ 1 0 ~ + 3 0 % .  

The large uncertainties are due to the difficulty of detecting the onset of the very 
weak secondary flow. 
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Figure lO(a) (plate 1) is a streak photograph for A = 9 x lo5. The gradual 
change of wavelength up the slot reflects the departure from uniformity of the 
primary flow. These departures are due to the large viscosity difference between 
the two walls. 

Figure 10(b) (plate 1) is a photograph of the toroidal disturbances in the 
annular space of apparatus 111. With this apparatus the cells grow first near 
z = h and fill more and more of the lower slot as the heat flux is increased. This 
observation suggests that the appearance of the secondary flow is sensitive to the 
Rayleigh number since in this apparatus, with a uniform heat flux on the hot 
wall, the Rayleigh number increases vertically. 

10 

h 

1 
lo5 106 

A 
1 o7 

FIGURE 11.  Vertical wavelength of the secondary flow as a function of A .  
0, L = 2.00 em; 0,  L = 4-00 cm. Apparatus I. 

These gross changes are summarized in figure 11 which relates the vertical 
wavelength h measured near z = &h to A .  For all these experiments the initial 
secondary flow has a large wavelength of order H ,  so that the apparatus used was 
too short. There is a rapid decrease in h as A increases. 

5.2. Non-linear egects 

As the disturbance amplitude increases, the disturbance begins to interact 
with the primary flow. Figure 12 shows On, for two values of A .  For A = 5.3 x 105, 
which is near critical, the profile is closely linear away from the ends, except for 
a weak barely significant periodicity of wavelength h .i. 8. At A = 3.3 x lo6 the 
oscillations are pronounced, with distinct and extensive portions where 
d8,Jdx = 0. Visual observation of the slot shows that the shear layers between 
each cell coincide with the regions of large temperature gradient dO,/dz. 

The interaction with the primary flow is strikingly shown in the temperature 
distribution of figure 13 for L = 4.08cm, A = 3-3 x lo6. This pattern does not 
show the detail revealed in the streak photographs because of drift during 
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measurement and lack of sensitivity. While the 6’ = @z + @(x) variation is still 
dominant in the inner region, the isotherms are both steepened and given a 
periodic variation of spacing. The local temperature variation due to the distur- 
bances is rt 0.015 AT in figure 13. Colder fluid is carried from near the cold wall 
across the slot and up the hot wall where it is heated and again carried across the 
slot to the cold wall. 

Z l h  

FIGURE 13. Centre-line temperature 0, when the secondary flow is present, L = 4.08 cm; 
(1) A = 5.3 x lo5; (2) A = 3.3 x lo6. The position of the shear layers between cells is 
indicated. 

5.3.  The tertiaryjlow 

The most intriguing feature of this study occurs near A = lo6 and is shown in the 
photographs of figure 14 (plate 2) obtained with apparatus 11. Again at lower 
Rayleigh numbers the primary flow is unicellular; the first appearance of the 
secondary flow is similar to that shown in figures 9 and 10, but as the Rayleigh 
number is increased a pronounced and rapid change is observed in the weak shear 
layers between successive cells of the secondary flow. The shear layers become 
thicker, the bright lozenge-shaped patterns indicate that the aluminium particles 
are trapped and suggest that a new flow has appeared. Close inspection confirms 
this. Figure 15(a) (plate 3) shows a close-up of a ‘cats-eye’ of the secondary flow, 
together with tertiary flows in the shear layers. (The photograph is somewhat 
obscured by motions occurring close to the nearside glass side.) In figure 15(b )  
the camera has been carefully focused on the tertiary flow and reveals a circula- 
tion with closed streamlines. While the primary and secondary flows have the 
same sense of circulation (clockwise in the figures) the tertiary flow is in the 
opposite sense (anticlockwise in the figures). The sense of circulation is not shown 
by the photographs but is easily observed by eye. 

Detailed measurements of the tertiary flow are difficult. The velocity distribu- 
tion can be measured with acceptable accuracy but the temperature variation 
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produced by the secondary flow is only of order +. 0-02 AT. In  figure 15 (6 )  the 
tertiary cell is at  55" to the vertical, of thickness 6mm, length 16mm, has a 
temperature difference of 3.0 "C and a velocity change of 1.24 mm/sec across it. 

0 

FIGURE 13. Detail of the temperature distribution showing the interaction of the primary 
and secondary temperature field. A = 3.3 x lo6; 
L = 4.08 em. 

Isotherms are in units of 1/40 "C. 

6. Discussion of the primary flow 
6.1. Formulation of the problem 

The aim of the discussion below is a tentative attempt to elucidate the mechanisms 
involved in the primary flow. We are interested in the flow for all possible values 
of A ,  h and AS'. But clearly there will be substantial differences in the details of the 
flows for h >> 1, where the buoyancy field and the velocity field are parallel over 
the greater portion of the slot, and h <  1, where the two fields are generally 
perpendicular. Here our concern is with h>> 1. In  addition, the experiments 
reported here were performed with c + 103. Our principal concern therefore is to 
discuss the flow as a function of A for given h >> 1 and S 9 1. 

The field equations relating the variables density, temperature, velocity and 
pressure are those of conservation of mass, momentum, energy and the equation 
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of state. These can be made dimensionless by choosing units of length, tempera- 
ture, pressure, and velocity, as in (2). For h $ 1 the equations can be simplified by 
means of a boundary-layer-type approximation, a2/ax2 & a2/az2. This implies that 
the lateral rate of diffusion of momentum and heat is much more rapid than the 
vertical rate. Consequently, the x-momentum equation is of lower order than that 
of the z-momentum equation. Therefore, the pressure P = P(z). Thus in dimen- 
sionless variables, with the simplification p = P+pgz, and the Boussinesq 

( 3 4  
approximation, 

U l t +  WW, = -Bpz (~)+A6+SW, , ,  ( 3 b )  

u@,+ we, = e,,is, ( 3 4  

u,+rv, = 0, 

where B = g L 3 / ~ v .  These equations must satisfy U = W = 0 on x = 0 , l ;  6 = 1 , O  
on x = 0 , l  and suitable conditions on z = 0, h. 

In general, the analysis will ignore the end regions, so that, unless otherwise 
stated, the calculations refer only to some region near z = gh. 

6.2. The interior region 

We notice that the entire flow field is symmetrical about the central point 
x = 1 29 z = +h. In  particular, continuity requires U = 0 on z = ah so that in some 
interior region near x = +, z = &h, where U = 0, inertial effects will be negligible. 

In  some region near x = 3, z = gh consider the consequences of writing U = 0. 
From ( 3 )  w, = 0, (4a )  

and 

A8 = B ~ , ( z )  - SW,,, 

swe, = ez,. 
This is a flow which is independent of z, in which buoyancy forces are balanced by 
viscous forces and the vertical pressure gradient, inertial forces being identically 
zero. Heat is transported horizontally solely b y thermal conduction and vertically 
solely by advection. 

Hence W = W(x), and ( 4 b )  shows 0 as the sum of a function ofx and a function 
of z. Substituting for 0 in (4c) 

BS Wpzs = - XW,,,,. 

Since W = W(x) and p E p(z ) ,  this is only possible if 

( 6 )  

Hence, from ( 4  b )  p = 0, = const. (7 )  

p,, = const. 

Note that the equations (4) could have been derived directly from the complete 
equations with U = 0. An extra term O,, would then be found in (4c)  and hence a 
term Bp,,, in ( 5 ) .  But this does not alter the argument, since in both cases the 
proposed solution is only possible if pzz. = const. It should therefore be remem- 
bered that the form of the interior solution relies only on the assumption U = 0 
and not on the boundary -layer-type approximation. 
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6 .3 .  The existence of a non-zero vertical temperature gradient 

The form of the interior solution can now be found provided ,!? is known. There are 
two obvious possibilities /3 = 0 or /3 > 0. 

Consider /3 = 0. From (4b) pz = const. and from (4c)  8, = const. It is now seen 
that a solution valid for all x can be obtained to satisfy the boundary conditions 
8 = 1 , 0 ;  W = O o n x = O , l , t h a t i s  

8 =  1-x, (*a) 

(8b) and from (4 b) 12SW = Ax( 1 - X )  (1 - 2 ~ ) .  

Now as shown by Batchelor (1954), using an expansion in powers of A, this is the 
solution to order A ,  distant from the ends. (The result itself can be obtained 
directly from the equations of motion by writing 8,, W ,  = 0.) That is to say, for 
given h, there will be values of A sufficiently small for (8) to be valid. Otherwise, 
however, for values of A such that 8 =l= (1 - x) we expect p $: 0. 

6.4. The form of the solution in the interior region for A + 1 

For ,8 > 0,  substituting for pzB from (4b) in ( 5 ) ,  we obtain 

where 

(D4 + 4m4) W = 0,  

4m4 = PA, 

and D = d/dx. This has solutions of the form exp mx( 5 1 k i ) .  If rn is sufficiently 
large, a suitable solution for W is, 

(1la) 

(116) 

(114 

W = (2m2f/flPS) (e-mx sin mx - e-me sin mx), 

8 = 19,(z) + f (e-mx cos mx - e-me cos rnx), 

8, = BpJA = $ + B(z - Qh), 

writing Z = 1 - x. Whence from (4 b)  

where 

and f is (at the moment) an arbitrary constant. Note that the forms of W and 8 
are antisymmetric about x = 4 as required by the centro-symmetry of the entire 
flow. It must be emphasized that (1 1) is only valid if m is sufficiently large for 
there to be a region of no vertical motion and uniform temperature gradient 
between the wall layers and that even then it is only valid in the parts of the wall 
layers furthest from the wall. 

The solution ( 1  1) strictly applies only near x = 8, z = +h, but we notice, if 
e-m< l , t h a t o n x = O , l  W + O a n d @ =  1,Oif 

f = 0.5. (114 

The vertical temperature gradient ,!I remains as an unknown constant. 
The form of the solution (1 1) agrees fairly well with the temperature data of 

figure 3 and the velocity data of figure 6. The experimental values off, given in 
table 1, are moderately close to 0.5. The value f = 0.25 a t  A = 3.08 x lo* is, 
however, rather low and suggests that this particular flow is not in the limiting 
state for which p is independent of A. The progressive change in the velocity 
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profile with increasing m, in particular the flow reversal revealed in figure 6 (d), 
is nicely predicted. The region over which (1 1) is satisfactory, within the experi- 
mental accuracy, is roughly the central half of the slot. 

6.5. A discussion of theJlow as a whole 

The flow can be considered as an interaction between two thermal boundary 
layers, one on the hot wall, the other on the cold wall. Consider an infinite 
stationary body of fluid a t  temperature 0, = 8, in which are placed two vertical 
plates, one heated to a temperature + above that of the ambient fluid, the other 
cooled by an equal amount. If the plates are widely separated the flow near one 
plate can be expected to be independent of the other plate. Let us concentrate 
attention for the moment on the flow near the hot plate. Then, as seen in Squire’s 
calculations (Goldstein 1938), which uses the method of von KkmAn and 
Pohlhausen, the velocity in the thermal boundary layer, which grows near the 
wall, is nearly vertical except for the small entrainment velocity U = U(z).  In  
Squire’s calculation, therefore, the ambient fluid, distant from the plate, is at 
a uniform temperature but has a horizontal velocity which is a function of height. 
Similar remarks apply to the cold plate. But the U ( z )  required for an isolated 
plate cannot simultaneously satisfy the requirements of both plates. 

The role of the vertical temperature gradient in this process is seen in equa- 
tion (3 b) .  Near z = 0 the buoyancy forces exceed the viscous forces and accelerate 
the fluid, but owing to the vertical temperature gradient the buoyancy force 
diminishes, till a t z  = ah it is balanced by the viscous forces. Thefluidisdecelerated 
beyond z = +h. It should be noted that outside the wall layers there will be an 
entrainment flow U(z).  Near z = ah, U = 0 as required by continuity and the 
symmetry of the boundary conditions, but in the regions of growth of the wall 
layers U $: 0. Thus U < 0 for z c ih,  and U > 0 for z > +h corresponding to 
entrainment of fluid into the growing layers but out of the layers beyond their 
point of maximum growth. These features are clearly demonstrated by Eckert & 
Carlson’s (1961) measurements. 

In  $5 6.3 and 6.5 we have solutions for the two cases /? = 0 and p = const. These 
can be interpreted in the above terms as follows. The case /3 = 0 corresponds to the 
two boundary layers each completely filling the slot. Heat is transferred across 
the slot by thermal conduction only, the consequent motion corresponding to 
a balance between buoyancy and viscous forces. Heat and momentum are 
transferred solely by diffusion. The case p = const. corresponds to a complete 
separation of the two layers, producing an interior of almost no motion and zero 
horizontal temperature gradient. In  this case no heat is transferred between the 
two layers. Hence, on integrating (4c)  from x = 0 to x = 3, 

Since W ,  .i: 0 near z = +h, this equation merely states that for a constant mass 

flow, X W ax, and heat input, - 8,(0), there will be a constant vertical tempera- 

ture gradient 0,. This situation does not arise for an isolated vertical plate 
0 



96 J .  W.  Elder 

because the fluid is accelerating and can transport the accumulated heat, 
diffused into the layer from the wall, as increased advection and by heating 
entrained ambient fluid. 

Experimentally, we have found that Ph is a constant, nearly independent of 
A and S for A and S sufficiently large. It is not surprising that Ph is independent 
of S, since it is well known that the gross features of free convective flows are 
nearly independent of S for S large. The following crude argument suggests a 
possible form for P = P(S, A ,  h). From (4c )  

P - 0mlSW- (13) 

For the purpose of estimating the right-hand side of (13) assume that the layers 
grow in a manner similar to that on an isolated plate. Then in Squire’s solution for 
S > 1 it  is seen that S,, N l/Sz - (A/h)*, where 8 is the boundary-layer thickness, 
and S W N (Ah):. Hence 

The agreement of this with the experiments suggests that, at least in part, the 
layers grow like those on an isolated plate. The measurements of heat-transfer 
coefficient given by Eckert & Carlson (1961) confirm this suggestion. More 
importantly this suggests that P arises from the interaction of the boundary 
layers, viz. by inhibiting entrainment, rather than arising from effects in the end 
regions with mere conduction of heat from the hot upper to the cold lower end 
producing the gradient. 

becomes finite can be obtained 
by noticing that for 8 = 1 - x, 

which has a maximum at 

P N llh. (1-1) 

An estimate of the Rayleigh number at which 

Wcc x( 1 - x) (1 - Sx), 

xW = (1 - 1/43) = 0.211. 

The solution W E  e--sinmx has a maximum near xi = n/4m. Clearly, we must 
have xi < xTy, hence m 2 1.227~. If we take P = 0.5/h, since 4m4 = PA,  

A 2 1770h. (15) 

It also follows that the solution obtained above cannot be expected to be valid 
unless A > 1770h. This limit for the change from conductive to convective 
domination is in reasonable agreement with experiment (4.v. figure 5).  

7. A remark on the primary flow as A -+ co 
The solution of 8 6 suggests that, as A -+ co, there will be a uniform vertical 

temperature gradient and no motion almost everywhere in the slot. Undoubtedly 
there will be boundary layers on the walls but, since these have a thickness pro- 
portional to A-$, they will be infinitesimally thin as A + co. 

This deduction differs from the suggestion of Pillow (1952) and Batchelor 
(1 954) that the flow should have constant non-zero vorticity and uniform 
temperature almost everywhere. In  the limiting case proposed by Batchelor 
and Pillow the non-linear terms are important everywhere in the slot, whereas 
the present formulation is based on the assertion that in the inner region these 
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terms are negligible. In  the present experiments this is certainly the case, because 
the non-linear terms are seen to be dominant only in the wall layers, so that since 
the boundary layers are infinitesimally thin as A 3 00, the non-linear terms would 
be zero everywhere except for sheets on the walls. 

It is worth remarking here on a physically erroneous idea I have frequently 
encountered while talking about this problem. The motion in the boundary 
layers appears to provide a torque on the inner fluid thereby giving vorticity to 
the interior. This is not so for finite Prandtl number. The motion in the boundary 
layer does generate a torque, but as seen in (4 b )  this is balanced by the torque due 
to the horizontal gradient of buoyancy forces. As seen in 8 6, the vorticity in the 
fluid falls rapidly to zero as the outer portion of the boundary layer is approached. 

8. Discussion of the secondary and tertiary flows 
Above A N lo5 a steady secondary flow appears in the interior region with 

streamlines resembling a ‘cats-eye ’ pattern. Such a pattern can be produced by 
superimposing a periodic secondary motion upon a shear flow. However, a 
curious feature of the secondary flow is the strong tilting of the shear layers 
betweenthecells(e.g.seefigureslO(a), 14and 15, plates 1,2,3). Thisfeaturecanbe 
reproduced if the periodic secondary motion has lines of constant phase inclined to 
the horizontal, so that the temperature and stream function of the secondary 
motion 8, $have, e.g., the form 

(16) 
In  the experiments u, v become zero at  x,ii = d < 4. Consider the following 
example. Let the primary stream function be 4<(x + +)2, corresponding to a 
uniform shear. A suitable form for v(x) is v(x)  = C(d2 - (x + 4)2}2, since then 
$, $z = 0 on x = 3 k d. Thus consider the total stream function 

where x’ = (x + *)/a and 6 = 2d2G/< is a measure of the secondary-flow amplitude 
relative to that of the primary flow. Figure 16 shows the streamlines for slr = 0.4, 
a value for the data of figures 10 (a), 14 and 15, r = n / d  when [ = 0.2,l. When [is 
sufficiently small, as in figure 16 (a) ,  the circulation is everywhere of the same 
sign, equal to that of the primary flow. The secondary flow has unit cells of 
vertical wavelength equal to that of the perturbation but displaced vertically a 
quarter wavelength. When 6 is sufficiently large, as in figure 16 (b ) ,  the flow is as 
before except for regions of reversal of circulation near the position of the shear 
layer between the original cells. Here are our so-called tertiary flows. 

The condition for the appearance of the tertiary flows is simply that $*, = 0 
at points 0 < Ix’J < 1. For our present example this requires 6 > 4. In the 
experiments [ increases with Rayleigh number both because the perturbation 
amplitude increases and because < decreases as the flow becomes increasingly 
localized near the walls. 

In so far as the description (16) of the motion is valid, namely, that the cells of 
opposite circulation are due to a strengthening of the secondary flow relative to 
the primary flow, the possibility that the tertiary flows arise from an instability 
of the secondary flow is discounted. 

(8, $) = {u(x),  w(x)} sin (rx + sx + +)}. 

$* = $/&<d2 = d2  + t( 1 - x’2)2sin (rx + sz), (17) 

7 Fluid Mech. 23 
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(a )  5 = 0.2 
x' 

(6) 5 = 1 
FIGURE 16. Sketch of streamlines given by (17) for two values of the relative perturbation 
amplitude: ( a )  6 = 0.2, showing the secondary flow; (6) 6 = 1, showing the tertiary flow. 
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